知乎2018年度必读书单排行榜
一本好书可以提升人的气质和思想,知乎上经常推荐一些经典的书籍,下文小编给大家整理了2018知乎上的经典必读书单,供参考!
2018年度知乎经典书单推荐
1.用Scikit-Learn和TensorFlow进行机器学习
首先,在我看来最好的一本是采用流行的机器学习库Scikit-Learn和Google的TensorFlow的实践教程来学习深度学习的书。
作者试图以一种几乎任何人都能理解的方式来解释复杂的话题,这在我看来是一个很大的优势。
我喜欢“ 动手机器学习”,它可以让你通过机器学习项目从开始到结束。因此,你可以看到如何处理真实数据,如何将数据可视化以获取洞察力,以及重要的是如何为机器学习算法准备数据。
在本书后面,你将看到著名的MNIST分类器,模型是如何训练以及一些基本的机器学习分类器,如SVM,决策树,随机森林等。
所有这一切都是为了让你准备好本书的第二部分,内容涉及Tensorflow(包括安装)以及基本的神经网络和深度神经网络。
我认为这本书的结构很好,并以正确的顺序介绍了主题,而且书中的想法和具体例子都有很好的解释。
2.深度学习(Deep Learning)
深度学习,可能是本文中最全面的书。 这本书由该领域的三位专家Ian Goodfellow,Yoshua Bengio和Aaron Courville撰写。此书也是唯一得到企业家马斯克认可的书。
这本书被许多人认为是深度学习的圣经,因为它汇集了数年和数年在一本书中学习和专注的研究。
这本书并不是为了专心学习,而是可以更好地用于睡前阅读,因为它充满了函数方程式,并以典型的教科书书写,所以它不会写成最有趣的风格。
它从一开始就介绍基础数学,如线性代数,概率论,接着转向机器学习基础,最后介绍深度网络和深度学习。
所以,如果你是一个渴望掌握主题并进入深度学习研究的有抱负的学生,那么这本书肯定会对你有所帮助。这可能是目前关于此主题的最全面的书籍。
3.Deep Learning for the Layman(为外行准备的深度学习)
我把这本书添加进来,因为正如标题所说的的那样,它是为一般读者而写的。
对于外行的深度学习首先介绍深度学习,具体来说,它是什么以及为什么需要它。
本书的下一部分解释了监督学习,无监督学习和强化学习之间的差异,并介绍了分类和聚类等主题。本书后面将讨论人工神经网络,包括它们是如何构建的以及构成网络中每一层的部分。最后讨论了深度学习,包括构成当今许多计算机视觉算法的一部分的卷积神经网络。
我将这本书看作是对深度学习的介绍,并了解所涉及的概念。但实际上,我不确定这本书会对你有好处,但如果你想要一本简单的英文指南,同时又能看到很少炒作的文字,那么这本书可能适合你。
4.建立你自己的神经网络(Make Your Own Neural Network)
这不是严格意义上的“深度学习”,但本书将带你深入了解神经网络及其工作原理,帮助你了解深度神经网络。
在本书中,你可以通过神经网络的数学指导,完整的理解神经网络的工作方式。
你不仅可以知道他们如何工作,还可以在Python中实现两个神经网络示例,这将有助于巩固你对该主题的理解。
本书从机器学习的高层概述开始,然后深入研究神经网络的细节。所涉及的数学并没有超出大学水平,但包含微积分的介绍,这是以尽可能多的人访问的方式解释的。
有两个部分可以建立自己的神经网络,第一部分是关于思想和理论的,第二部分是更实际的。
在第二部分中,你将学习Python编程语言,并逐渐建立起自己的能够识别手写数字的神经网络。
作为奖励,你还将学习如何让你的神经网络在Raspberry Pi上运行!
对于那些希望学习基本神经网络的基本内容的人来说,这本书是一本很棒的书,并且可以成为本次综述中有关深度学习的其中一本书的重要先决条件。
5.深度学习初学者(Deep Learning for Beginners)
对于初学者的深度学习,这本书并不太重视深度学习的数学,而是使用图表来帮助你理解深度学习的基本概念和算法。
本书采用与许多其他书籍不同的方法,通过提供深度学习算法的工作原理的简单示例,然后逐步构建这些示例并逐步引入更复杂的算法部分。
本书的目标受众非常多样,从计算机科学新手到数据科学专业人员和导师都希望以最简单的方式向学生解释相关主题。
就书本结构而言,你将首先学习人工神经网络的基础知识,并了解机器学习和深度学习之间的差异。之后,你将在进入卷积神经网络(CNN)和其他深度学习算法之前了解有关多层感知器(MLP)的所有信息。
这是一本很好的初学者书籍,可以很好地解释这些概念,但是如果你正在寻找更实用的东西,那么你应该在本综述中查找其他书籍。
标签:
相关文章
发表评论
评论列表